Карл Фридрих Гаусс

 

Гаусс любил говорить, что математика — царица наук, а теория чисел — царица математики.

1777—1798 годы

Гаусс родился 30 апреля 1777 г. в бедной семье, проживавшей в немецком городе Брауншвейг. Уже в двухлетнем возрасте мальчик показал себя вундеркиндом. В три года он умел читать и писать, даже исправлял арифметические ошибки отца. Известна история, в которой юный Гаусс выполнил некое арифметическое вычисление гораздо быстрее всех одноклассников; обычно при изложении этого эпизода упоминается вычисление суммы чисел от 1 до 100, но первоисточник этого неизвестен. До самой старости он привык большую часть вычислений производить в уме.

К. Ф. Гаусс

С учителем ему повезло: М. Бартельс (впоследствии учитель Лобачевского) оценил исключительный талант юного Гаусса и сумел выхлопотать ему стипендию от герцога Брауншвейгского. Это помогло Гауссу окончить колледж Collegium Carolinum в Брауншвейге (1792—1795).

М. Ф. Бартельс

Гаусс некоторое время колебался в выборе между филологией и математикой, но предпочёл последнюю. Он очень любил латинский язык и значительную часть своих трудов написал на латыни; любил английскую и французскую литературу, которые читал в подлиннике. В возрасте 62 лет Гаусс начал изучать русский язык, чтобы ознакомиться с трудами Лобачевского, и вполне преуспел в этом деле.

В колледже Гаусс изучил труды Ньютона, Эйлера, Лагранжа. Уже там он сделал несколько открытий в теории чисел, в том числе доказал закон взаимности квадратичных вычетов. Лежандр, правда, открыл этот важнейший закон раньше, но строго доказать не сумел; Эйлеру это также не удалось. Кроме этого, Гаусс создал «метод наименьших квадратов» (тоже независимо открытый Лежандром) и начал исследования в области «нормального распределения ошибок».

С 1795 по 1798 год Гаусс учился в Гёттингенском университете, где его учителем был А. Г. Кестнер. Это — наиболее плодотворный период в жизни Гаусса.

А. Г. Кестнер


1796 год: Гаусс доказал возможность построения с помощью циркуля и линейки правильного семнадцатиугольника. Более того, он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n-угольника с помощью циркуля и линейки.

Правильный семнадцатиугольник


Этим открытием Гаусс очень дорожил и завещал изобразить на своей могиле правильный семнадцатиугольник, вписанный в круг.
С 1796 года Гаусс ведёт краткий дневник своих открытий. Многое он, подобно Ньютону, не публиковал, хотя это были результаты исключительной важности (эллиптические функции, неевклидова геометрия и др.). Своим друзьям он пояснял, что публикует только те результаты, которыми доволен и считает завершёнными. Многие отложенные или заброшенные им идеи позже воскресли в трудах Абеля, Якоби, Коши, Лобачевского и др. Кватернионы он тоже открыл за 30 лет до Гамильтона (назвав их «мутациями»).
Все многочисленные опубликованные труды Гаусса содержат значительные результаты, сырых и проходных работ не было ни одной.
1798 год: закончен шедевр «Арифметические исследования» (лат. Disquisitiones Arithmeticae), напечатан только в 1801 году.

"Арифметические исследования" Гаусса


В этом труде подробно излагается теория сравнений в современных (введённых им) обозначениях, решаются сравнения произвольного порядка, глубоко исследуются квадратичные формы, комплексные корни из единицы используются для построения правильных n-угольников, изложены свойства квадратичных вычетов, приведено доказательство квадратичного закона взаимности и т. д. 

1798—1816 годы

В 1798 году Гаусс вернулся в Брауншвейг и жил там до 1807 года.
Герцог продолжал опекать молодого гения. Он оплатил печать его докторской диссертации (1799) и пожаловал неплохую стипендию. В своей докторской Гаусс впервые доказал основную теорему алгебры. До Гаусса было много попыток это сделать, наиболее близко к цели подошёл Д'Аламбер. Гаусс неоднократно возвращался к этой теореме и дал 4 различных её доказательства.
С 1799 года Гаусс — приват-доцент Брауншвейгского университета.
Брауншвейгский университет











В 1801 году он избирается членом-корреспондентом Петербургской Академии наук.
Петербургская Академия наук








После 1801 года Гаусс, не порывая с теорией чисел, расширил круг своих интересов, включив в него и естественные науки, в первую очередь астрономию. Поводом послужило открытие малой планеты Церера (1801), потерянной вскоре после обнаружения. 24-летний Гаусс проделал (за несколько часов) сложнейшие вычисления, пользуясь разработанным им же новым вычислительным методом, и с большой точностью указал место, где искать «беглянку»; там она, к общему восторгу, и была вскоре обнаружена.
Церера









Слава Гаусса становится общеевропейской. Многие научные общества Европы избирают Гаусса своим членом, герцог увеличивает пособие, а интерес Гаусса к астрономии ещё более возрастает.

В 1805 году Гаусс женился на Иоганне Остгоф. У них было трое детей, выжили двое — сын Йозеф и дочь Минна.

Иоганна Остгоф

Как раз в четвёртую годовщину свадьбы умерла Иоганна, вскоре после рождения третьего ребёнка. Этот год был самым тяжёлым для Гаусса. В следующем, 1810 году он женился вновь — на Вильгельмине («Минне») Вальдек, подруге Иоганны. Число детей Гаусса вскоре увеличилось до пяти.

Вильгельмина Вальдек














В 1806 году от раны, полученной на войне с Наполеоном, умирает его великодушный покровитель-герцог. Несколько стран наперебой приглашают Гаусса на службу (в том числе в Петербург). По рекомендации Александра фон Гумбольдта Гаусса назначают профессором в Гёттингене и директором Гёттингенской обсерватории. Эту должность он занимал до самой смерти.

Гёттингенский университет



В 1807 году наполеоновские войска занимают Гёттинген. Все граждане облагаются контрибуцией, в том числе огромную сумму — 2000 франков — требуется заплатить Гауссу. Ольберс и Лаплас тут же приходят ему на помощь, но Гаусс отклоняет их деньги; тогда неизвестный из Франкфурта присылает ему 1000 гульденов, и этот дар приходится принять. Только много позднее узнали, что неизвестным был курфюрст Майнцский, друг Гёте (по другим данным — епископ Франкфурта).

В 1809 году новый шедевр, «Теория движения небесных тел». Изложена каноническая теория учёта возмущений орбит.

Траектория движения планет солнечной системы

В 1810 году новые почести. Гаусс получает премию Парижской академии наук и золотую медаль Лондонского королевского общества.

Золотая медаль лондонского королевского общества

В 1811 году появилась новая комета. Гаусс быстро и очень точно рассчитал её орбиту. Начал работу над комплексным анализом, открывает (но не публикует) теорему, позже переоткрытую Коши и Вейерштрассом: интеграл от аналитической функции по замкнутому контуру равен нулю.

В 1812 году работал над исследованием гипергеометрического ряда, обобщающего разложение практически всех известных тогда функций.

Гауссова функция



Знаменитую комету «пожара Москвы» (1812) всюду наблюдают, пользуясь вычислениями Гаусса.

1816—1855 годы

В 1820 году Гауссу поручают произвести геодезическую съёмку Ганновера. Для этого он разработал соответствующие вычислительные методы (в том числе методику практического применения своего метода наименьших квадратов), приведшие к созданию нового научного направления — высшей геодезии, и организовал съёмку местности и составление карт.

В 1821 году в связи с работами по геодезии Гаусс начинает исторический цикл работ по теории поверхностей. В науку входит понятие «гауссовой кривизны». Положено начало дифференциальной геометрии. Именно результаты Гаусса вдохновили Римана на написание его классической диссертации о «римановой геометрии».

Гауссова кривизна


Итогом изысканий Гаусса была работа «Исследования относительно кривых поверхностей» (1822). В ней свободно использовались общие криволинейные координаты на поверхности. Гаусс далеко развил метод конформного отображения, которое в картографии сохраняет углы (но искажает расстояния); оно применяется также в аэро-, гидродинамике и электростатике.
В 1825 году открывает гауссовы комплексные целые числа, строит для них теорию делимости и сравнений. Успешно применяет их для решения сравнений высоких степеней.
В 1831 году умерла вторая жена, у Гаусса началась тяжелейшая бессонница. В Гёттинген приехал приглашённый по инициативе Гаусса 27-летний талантливый физик Вильгельм Вебер, с которым Гаусс познакомился в 1828 году в гостях у Гумбольдта. Оба энтузиаста науки сдружились, несмотря на разницу в возрасте, и начинают цикл исследований электромагнетизма.

В. Э. Вебер










В 1824 году избирается иностранным почётным членом Петербургской Академии наук.

В 1829 году в замечательной работе «Об одном новом общем законе механики», состоящей всего из четырёх страниц, Гаусс обосновывает новый вариационный принцип механики — принцип наименьшего принуждения. Принцип применим к механическим системам с идеальными связями и сформулирован Гауссом так: «движение системы материальных точек, связанных между собой произвольным образом и подверженных любым влияниям, в каждое мгновение происходит в наиболее совершённом, какое только возможно, согласии с тем движением, каким обладали бы эти точки, если бы все они стали свободными, то есть происходит с наименьшим возможным принуждением, если в качестве меры принуждения, применённого в течение бесконечно малого мгновения, принять сумму произведений массы каждой точки на квадрат величины её отклонения от того положения, которое она заняла бы, если бы была свободной».

В 1832 году «Теория биквадратичных вычетов». С помощью тех же целых комплексных гауссовых чисел доказываются важные арифметические теоремы не только для комплексных, но и для вещественных чисел. Здесь же Гаусс приводит геометрическую интерпретацию комплексных чисел, которая с этого момента становится общепринятой.
В 1833 году Гаусс изобретает электрический телеграф и (вместе с Вебером) строит его действующую модель.

Электрический телеграф Гаусса-Вебера


В 1837 году Вебера увольняют за отказ принести присягу новому королю Ганновера. Гаусс вновь остаётся в одиночестве.
В 1839 году 62-летний Гаусс овладевает русским языком и в письмах в Петербургскую Академию просит прислать ему русские журналы и книги, в частности «Капитанскую дочку» Пушкина. Предполагают, что это связано с интересом Гаусса к работам Лобачевского, который в 1842 году по рекомендации Гаусса был избран иностранным членом-корреспондентом Гёттингенского королевского общества.

"Капитанская дочка" А.С. Пушкина

В том же 1839 году Гаусс в сочинении «Общая теория сил притяжения и отталкивания, действующих обратно пропорционально квадрату расстояния» изложил основы теории потенциала, включая ряд основополагающих положений и теорем — например, основную теорему электростатики (теорема Гаусса).

В 1840 году в работе «Диоптрические исследования» Гаусс разработал теорию построения изображений в сложных оптических системах.

Умер Гаусс 23 февраля 1855 года в Гёттингене. Король Ганновера Георг V приказал отчеканить в честь Гаусса медаль, на которой были выгравированы портрет Гаусса и почётный титул «Mathematicorum Princeps» — «король математиков».

Могила Гаусса в Гёттингене

Работы, написанные Карлом Фридрихом Гауссом


Год



Название работы


1801 г.


Карл Гаусс опубликовал свою научную работу под названием «Арифметические исследования»



1809 г.


«Теория движения небесных тел, обращающихся вокруг Солнца по коническим сечениям». Этот труд содержит способ определения орбит планет на основе наблюдений.  Гаусс нашёл способ определения элементов орбиты по трём полным наблюдениям (если на три момента времени известны -время, прямое восхождение и склонение).



1815 г.


Гаусс публикует первое строгое доказательство основной теоремы алгебры.



1820-1821 гг.


Теоретическая астрономия. Лекция зачитывалась в Геттингене в 1820-1821 г. Записана Купфером



1822 г.


Опубликовал цикл работ по теории поверхности, которые вышли в публикации под названием «Исследования относительно кривых поверхностей» 



1825 г.


«Об одном новом общем законе механики»



1827 г.


«Общие исследования о кривых поверхностях». Гаусс опубликовал полную теорию поверхностей, его труды по дифференциальной геометрии дали мощный толчок развитию этой науки на весь XIX век. Попутно он создал новую науку — высшую геодезию.



1829 г.


Небольшая работа «Об одном новом общем законе механики»



1832 г.



«Теория биквадратичных вычетов». В этом труде приведено доказательства самых важных теорем в области арифметики, связанных с вещественными и комплексными числами.



1832 г.



«Интенсивность земной магнитной силы, приведенная к абсолютной мере»


1840 г.



«Общие теоремы относительно сил притяжения и отталкивания, действующих обратно пропорционально квадрату расстояния».



1840 г.



«Диоптрические исследования»

Вклад Карла Фридриха Гаусса в алгебру

Гаусс дал первые строгие, даже по современным критериям, доказательства основной теоремы алгебры.
Он открыл кольцо целых комплексных гауссовых чисел, создал для них теорию делимости и с их помощью решил немало алгебраических проблем. Указал знакомую теперь всем геометрическую модель комплексных чисел и действий с ними.
Гаусс дал классическую теорию сравнений, открыл конечное поле вычетов по простому модулю, глубоко проник в свойства вычетов.

Вклад Карла Фридриха Гаусса в геометрию

Гаусс впервые начал изучать внутреннюю геометрию поверхностей. Он открыл характеристику поверхности (гауссову кривизну), которая не изменяется при изгибаниях, тем самым заложив основы римановой геометрии. В 1827 году опубликовал полную теорию поверхностей. Труды Гаусса по дифференциальной геометрии дали мощный толчок развитию этой науки на весь XIX век. Попутно он создал новую науку — высшую геодезию.

Гаусс также первым построил неевклидову геометрию и поверил в её реальность, но был вынужден держать свои исследования в секрете (вероятно, из-за того, что они шли вразрез с догматом евклидовости пространства в доминирующей в то время Кантовской философии). Тем не менее, сохранилось письмо Гаусса к Лобачевскому, в котором ясно выражено его чувство солидарности, а в личных письмах, опубликованных после его смерти, Гаусс восхищается работами Лобачевского. В 1817 году он писал астроному В. Ольберсу: 

 

"Я прихожу всё более к убеждению, что необходимость нашей геометрии не может быть доказана, по крайней мере человеческим рассудком и для человеческого рассудка. Может быть, в другой жизни мы придем к взглядам на природу пространства, которые нам теперь недоступны. До сих пор геометрию приходится ставить не в один ранг с арифметикой, существующей чисто a priori, а скорее с механикой."

Гаусс доказал Theorema Egregium, основную теорему теории поверхностей.

В его бумагах обнаружены содержательные заметки по тому предмету, что позже назвали топологией. Причём он предсказал фундаментальное значение этого предмета.

Гаусс завершил теорию построения правильных многоугольников с помощью циркуля и линейки.

Вклад Карла Фридриха Гаусса в математический анализ

Гаусс продвинул теорию специальных функций, рядов, численные методы, решение задач математической физики. Создал математическую теорию потенциала.

Много и успешно занимался эллиптическими функциями, хотя почему-то ничего не публиковал на эту тему.

Вклад Карла Фридриха Гаусса в астрономию

В астрономии Гаусс, в первую очередь, интересовался небесной механикой, изучал орбиты малых планет и их возмущения. Он предложил теорию учёта возмущений и неоднократно доказывал на практике её эффективность.

В 1809 году Гаусс нашёл способ определения элементов орбиты по трём полным наблюдениям (если на три момента времени известны -время, прямое восхождение и склонение).

Другие достижения Карла Фридриха Гаусса 

Для минимизации влияния ошибок измерения Гаусс использовал свой метод наименьших квадратов, который сейчас повсеместно применяется в статистике.

Хотя Гаусс не первый открыл распространённый в природе нормальный закон распределения, но он настолько тщательно его исследовал, что график распределения с тех пор часто называют гауссианой.

В физике Гаусс заложил основы математической теории электромагнетизма, развил теорию капиллярности, теорию системы линз.

Введено понятие потенциала электрического поля.

Разработал систему электромагнитных единиц измерения СГС.

Сконструировал, совместно с Вебером, примитивный телеграф.

Также советуем посмотреть видеоролик о жизни Карла Фридриха Гаусса


Лента времени о жизни Карла Фридриха Гаусса